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Latent circuit inference from heterogeneous 
neural responses during cognitive tasks
 

Christopher Langdon    1,2 & Tatiana A. Engel    1,2 

Higher cortical areas carry a wide range of sensory, cognitive and motor 
signals mixed in heterogeneous responses of single neurons tuned to 
multiple task variables. Dimensionality reduction methods that rely on 
correlations between neural activity and task variables leave unknown how 
heterogeneous responses arise from connectivity to drive behavior.  
We develop the latent circuit model, a dimensionality reduction approach 
in which task variables interact via low-dimensional recurrent connectivity 
to produce behavioral output. We apply the latent circuit inference to 
recurrent neural networks trained to perform a context-dependent 
decision-making task and find a suppression mechanism in which contextual 
representations inhibit irrelevant sensory responses. We validate this 
mechanism by confirming the behavioral effects of patterned connectivity 
perturbations predicted by the latent circuit model. We find similar 
suppression of irrelevant sensory responses in the prefrontal cortex of 
monkeys performing the same task. We show that incorporating causal 
interactions among task variables is critical for identifying behaviorally 
relevant computations from neural response data.

Cognitive functions depend on higher cortical areas, which integrate 
diverse sensory and contextual signals to produce a coherent behav-
ioral response. These computations result from interactions between 
excitatory and inhibitory neurons in cortical circuits. Traditionally, 
hand-crafted neural circuit models were used to pose specific mecha-
nistic hypotheses about how excitation and inhibition between a few 
neural populations representing task variables control the flow of 
information from input to behavioral output1–11. Because these circuit 
models usually assume a relatively simple connectivity structure, their 
connectivity can be directly related to a dynamical system descrip-
tion of computations supporting cognitive task execution5,6. Thus, 
these models explicitly specify a circuit mechanism in the connec-
tivity structure that gives rise to a dynamical mechanism control-
ling the flow of neural trajectories to implement task computations.  
By linking connectivity to neural dynamics and behavioral output, 
these models can predict changes in dynamics and behavioral per-
formance under perturbations of the circuit structure (for example, 
changes in excitation–inhibition balance12) and thus can be causally  
validated in experiments13–15. However, hand-crafted circuit models  

come short of capturing the complexity and heterogeneity of single- 
neuron responses in the cortex.

Single neurons in areas such as the prefrontal cortex (PFC) 
show complex heterogeneous tuning to multiple task variables16–21, 
which presents a formidable challenge for identifying underlying 
circuit mechanisms. Similar heterogeneous responses emerge in 
high-dimensional recurrent neural network (RNN) models trained 
to perform cognitive tasks19,22–24 or reproduce neural activity data25–29 
by optimizing recurrent connectivity parameters. Although trained 
RNNs are a class of neural circuit models, the complexity of their 
high-dimensional activity and connectivity obscures the interpreta-
tion of circuit mechanisms in these networks30. It has been possible 
to determine dynamical mechanisms of task computations by either 
characterizing fixed points and linearized dynamics around them 
in RNNs19,31 or fitting a dynamical system directly to neural response 
data27,32–35. These approaches, however, provide no insight into how 
particular features of the flow field in a dynamical system arise from the 
network connectivity. Thus, high-dimensional RNNs currently serve as 
intermediate mechanistic models of heterogeneous neural responses, 
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suggest that RNNs and conceivably the PFC implement qualitatively 
novel task solutions that do not exist in small circuits and emerge only in 
high-dimensional networks19,47,48. However, because correlation-based 
dimensionality reduction methods bear no links to the connectivity 
and causal mechanisms, whether heterogeneous neural responses 
during cognitive tasks arise from low-dimensional circuit mechanisms 
remains an open question.

To bridge this gap, we develop the latent circuit model, a dimen-
sionality reduction approach that jointly fits neural responses and task 
behavior and incorporates recurrent interactions among task variables 
to capture a causal mechanism of task execution. Our model fits neural 
responses with dynamics generated by a low-dimensional latent circuit, 
thereby directly testing the hypothesis that heterogeneous neural 
responses arise from a low-dimensional circuit mechanism. The model 
simultaneously infers a low-dimensional latent circuit connectivity 
generating task-relevant dynamics and heterogeneous mixing of these 
dynamics in single-neuron responses. We applied latent circuit infer-
ence to RNNs optimized on a context-dependent decision-making task 
and found a circuit mechanism based on the inhibition of irrelevant 
sensory representations. We validated this mechanism by confirming 
the behavioral effects of patterned perturbations of the RNN activity 
and connectivity predicted by the latent circuit model. Moreover, 
fitting the latent circuit model to neural recordings from the PFC of 
monkeys performing the same context-dependent decision-making 
task revealed a qualitatively similar suppression mechanism, in con-
trast to previous analyses of the same data with correlation-based 
methods19,21. Using RNN perturbations, we show that dimensionality 
reduction methods that do not incorporate causal interactions among 
latent variables are biased toward uncovering behaviorally irrelevant 
representations. Our results show that high-dimensional networks 
use low-dimensional circuit mechanisms, establish the feasibility of 

which yield dynamical mechanisms but leave the underlying circuit 
mechanisms unknown.

Although single-neuron responses are complex and heterogene-
ous, their joint population activity is often low dimensional across 
many cognitive tasks and brain areas30,36. Accordingly, dimensionality 
reduction methods are commonly used to reveal representations of 
low-dimensional latent variables in neural population activity, which 
reflect computations emerging at the population level. Because unsu-
pervised methods do not explicitly model task inputs and behavio-
ral outputs, the latent variables they infer may be unrelated to the 
cognitive task execution26,37–40. Therefore, targeted dimensionality 
reduction methods directly model neural representations of task 
inputs and behavioral outputs by seeking low-dimensional projec-
tions of neural population activity that correlate with external task 
variables19,21,41–43 (Fig. 1a,b). However, unlike RNNs and circuit mod-
els, these correlation-based methods do not incorporate recurrent 
interactions among task variables, which implement computations 
necessary to solve the task. Hence, it remains uncertain whether neural 
representations uncovered by these methods bear any relevance for 
driving behavior and have the causal predictive power comparable to 
the dynamical and circuit mechanisms.

The glaring gap between circuit mechanisms and correlation-based 
dimensionality reduction methods is apparent in studies of the PFC’s 
role in context-dependent decision-making. Context-dependent 
decision-making requires flexible trial-by-trial switching between 
alternative stimulus–response mappings. Most circuit models hypoth-
esize a relatively simple mechanism based on inhibition of sensory 
representations irrelevant in the current context8–10,44–46. By contrast, 
dimensionality reduction methods applied to PFC data or RNN activity 
show minimal suppression of irrelevant sensory responses19,21, seem-
ingly invalidating the inhibitory circuit mechanism. These results 

Task inputs 
a b

Latent node

1 2

21

c

Task variable

n
N

d e QδijQ
T

δij

i

j

Latent
node

RNN unit

Q

Time

La
te

nt
no

de

3

3

Task outputs 

u1

u1

u1

u2

u2 z
z

N
eu

ro
n

Q

N
eu

ro
n

qT 2y
qT 1y

dT 2y
dT 1y

Inh
Exc

Loading

Loading

RN
N

 u
ni

t

Perturbation w
eight

Time Time

Q

D

υ (xt)

xt

V (Qxt)

Qxt

z

u2

Fig. 1 | Latent circuit model of heterogeneous neural responses during 
cognitive tasks. a, A cognitive task requires the production of desired behavioral 
outputs z prompted by external inputs u. The inputs u and outputs z are the task 
variables. b, Dimensionality reduction based on the correlation between neural 
activity and task variables. The matrix DT defines a projection from neural activity 
space onto task variables (left). Each column of D defines an axis in the neural 
population state space such that the projection of neural activity onto this axis 
correlates with a specific task variable (right). c, Latent circuit model. Embedding 
matrix Q defines a projection from the population state space onto nodes of the 
latent circuit (left). The nodes interact through recurrent dynamics Eq. (2), are 
driven by task inputs u and generate task outputs z (center). Each column of Q 
defines an axis in the population state space such that the projection of neural 
activity onto this axis correlates with the activity of one node in the latent circuit 

(right); Inh, inhibitory; Exc, excitatory. d, We differentiate the mapping of 
trajectories y = Qx to obtain the correspondence between the vector field 
̇y = V(y) of the high-dimensional system and the vector field ̇x = v(x) of the 

latent circuit: V(y) = Qv(x). This equation states that the subspace spanned by the 
columns of Q is an invariant subspace of the high-dimensional system; that is, the 
vector field at any point in this subspace lies entirely in this subspace. Using the 
orthonormality of Q, we then derive the relationship: QTV(Qx) = v(x), which 
asserts that the latent vector field v(x) describes dynamics of the high-
dimensional system in this invariant subspace. e, The relationship between 
connectivity of the latent circuit and RNN enables us to translate connectivity 
perturbations. Perturbing connection δij from node j to node i in the latent circuit 
maps onto rank-one connectivity perturbation QδijQT = qiqTj  in the RNN.
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inferring these mechanisms from neural response data and open new 
possibilities of causally validating circuit mechanisms in perturbation 
experiments.

Results
Latent circuit model
To bridge the gap between dimensionality reduction, circuit mecha-
nisms and single-neuron heterogeneity, we develop a latent circuit 
model (Fig. 1c). Similar to other dimensionality reduction methods, 
we model high-dimensional neural responses y ∈ ℝN  (N is the number 
of neurons) during a cognitive task using low-dimensional latent vari-
ables x ∈ ℝn as

y = Qx, (1)

where Q ∈ ℝN×n  is an orthonormal embedding matrix and n ≪ N.  
The latent variables x are constrained to be nodes in a neural circuit 
with dynamics

̇x = −x + f(wrecx +winu), (2)

where f is a rectified linear (ReLU) activation function. The latent nodes 
interact via the recurrent connectivity wrec and receive external task 
inputs u through the input connectivity win. We also require the latent 
circuit to perform the task, that is, we can read out the task outputs z 
from circuit activity via the output connectivity wout:

z = woutx. (3)

The latent circuit model captures task-related neural activity in the 
low-dimensional subspace spanned by the columns of Q, with dynamics 
within this subspace generated by the neural circuit Eq. (2). We infer the 
latent circuit parameters (Q, wrec, win and wout) from neural activity y by 
minimizing the loss function L = ∑k,t∥y − Qx∥2 + ∥z − woutx∥2, where k and 
t index trials and time within a trial, respectively (Methods).

In the latent circuit model, the heterogeneity of single-neuron 
responses has three possible sources: mixing of task inputs to the latent 
circuit via win, recurrent interactions among latent nodes via wrec and 
linear mixing of representations in single neurons via the embedding 
Q. The orthonormality constraint on Q implies that the projection 
defined by the transpose matrix QT is a dimensionality reduction in 
which projection onto the ith column of Q correlates with the activity 
of the ith node in the latent circuit. Conversely, the image of each latent 
node i is a high-dimensional activity pattern given by the column qi of 
the matrix Q. Thus, the latent circuit provides a dimensionality reduc-
tion that incorporates an explicit mechanistic hypothesis for how the 
resulting low-dimensional dynamics are generated.

In general, it is not obvious under what circumstances we can satis-
factorily fit a latent circuit model to the responses of a high-dimensional 
system. If, for example, solutions to cognitive tasks that emerge in 
large systems are qualitatively different from mechanisms operat-
ing in small circuits, then we should not be able to adequately fit 
task-related dynamics of the large system with a low-dimensional 
circuit model. However, the existence of a low-dimensional circuit 
solution that accurately captures dynamics of the large system 
would suggest that this circuit mechanism may be latent in the high- 
dimensional system.

Interpreting latent connectivity
The advantage of the mechanistic model for latent dynamics is that we 
can interpret the latent connectivity and relate it to the connectivity of 
the high-dimensional system. In this context, RNNs optimized to per-
form a cognitive task provide an ideal setting for testing and validating 
the latent circuit inference. RNNs mimic the heterogeneity and mixed 
selectivity of neural responses in the cortex during cognitive tasks while 

providing full access to each unit’s activity, network connectivity and 
behavioral outcomes.

To interpret the latent connectivity, we differentiate the embed-
ding Eq. (1) to obtain the correspondence between vector fields of the 
high-dimensional and low-dimensional dynamical systems (Fig. 1d and 
Methods). We can then derive an explicit relationship between con-
nectivity matrices of a high-dimensional RNN and a low-dimensional 
latent circuit. We consider RNNs with dynamics

̇y = −y + f(Wrec y +Winu), (4)

where Wrec and Win are the recurrent and input connectivity matrices, 
respectively (Methods). Using the fact that the vector fields of the 
RNN and latent circuit are piecewise-linear dynamical systems, we 
derive a relationship between their recurrent and input connectivity 
matrices (Methods):

QTWrecQ = wrec, QTWin = win. (5)

The relation Eq. (5) shows that the latent circuit connectivity wrec 
is a low-rank structure in the connectivity of a high-dimensional net-
work, which captures interactions among the latent variables defined 
by the columns of Q. This relation does not necessarily imply that the 
full recurrent connectivity Wrec is low rank47,49,50. Rather, it is a weaker 
condition that the linear subspace defined by Q is an invariant subspace 
of the high-dimensional recurrent connectivity matrix. Because, in 
practice, we search for the latent circuit by minimizing the loss function 
L, if L is not exactly equal to 0, then Eq. (5) holds only approximately.

The relation between connectivity matrices has the powerful 
consequence that we can validate the latent circuit mechanism directly 
in the RNN connectivity. First, if the latent circuit faithfully describes 
the mechanism operating in the RNN, by conjugating the RNN con-
nectivity matrix with Q (Eq. (5)), we expect to find low-dimensional 
connectivity structure similar to the latent circuit connectivity. Such 
an agreement is nontrivial because the latent circuit inference uses 
only RNN activity without knowledge of the RNN connectivity. Second, 
Eq. (5) enables us to translate connectivity perturbations in the latent 
circuit onto the connectivity perturbations in the RNN. Specifically, a 
change in the connection δij between nodes i and j in the latent circuit 
maps onto a rank-one perturbation of the RNN connectivity matrix 
(Fig. 1e and Methods),

δij → qiqT
j, (6)

where qi is the ith column of Q. By translating latent connectivity per-
turbations onto the RNN, we can verify whether these connectivity 
perturbations affect RNN behavioral performance as predicted by 
the latent circuit model. The validation of inferred circuit mechanisms 
via RNN perturbations is critical because the fit quality alone does not 
guarantee that the inferred model captures the correct mechanism 
that generated data40. Thus, confirming predicted behavioral effects 
of connectivity perturbations establishes the existence of the inferred 
low-dimensional circuit mechanism in the RNN.

Latent circuit for context-dependent decision-making
We applied our latent circuit inference to RNNs optimized to perform 
a context-dependent decision-making task, which requires the dis-
crimination of either the color or motion feature of a sensory stimulus 
depending on the context cue19 (Fig. 2a,b and Methods). The RNN suc-
cessfully learns the task; it makes choices according to the relevant 
stimulus and ignores the irrelevant stimulus in each context (Fig. 2c). 
After training, RNN units show heterogeneous mixed selectivity for 
multiple task variables (Supplementary Fig. 1). The structure in the 
RNN connectivity responsible for generating the correct behavioral 
outputs is not immediately obvious (Fig. 2d).
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We fitted the latent circuit model to the responses of RNN units and 
its output behavior during the task. The latent circuit model consisted 
of eight nodes corresponding to task variables: two context nodes, two 
sensory color nodes, two sensory motion nodes and two choice nodes. 
The identity of each node is derived from its input or output, facilitating 
the interpretation of the latent circuit mechanism. This choice of the 
latent circuit dimensionality agrees with the dimensionality of RNN 
responses after training, which is usually close to the total number of 
inputs and outputs (the first eight principal components accounted for 
97.9% of the total variance in RNN responses; Supplementary Fig. 2). 
The fitted latent circuit model captured an overwhelming amount of 
variance in the RNN activity (coefficient of determination r2 = 0.96 
on test data) and accurately matched projected RNN trajectories  
(Supplementary Fig. 3).

The inferred recurrent connectivity wrec of the latent circuit 
revealed an interpretable mechanism for context-dependent decision- 
making (Fig. 3a,b). In the latent circuit, sensory nodes representing 
stimuli associated with the left choice (left motion and green color) 
have excitatory connections to the left choice node, and sensory 
nodes representing stimuli associated with the right choice (right 
motion and red color) have excitatory connections to the right 
choice node. This pattern of connections from sensory to choice 
nodes implements two alternative stimulus–response mappings in 
the task. Further, the color context node has inhibitory connections 
to the sensory nodes representing motion, and the motion context 

node has inhibitory connections to sensory nodes representing color.  
This pattern of connections from the context nodes to the sensory 
nodes implements a suppression mechanism that inhibits the irrel-
evant stimulus–response mapping in each context. Because the 
irrelevant sensory representation is suppressed, it does not drive the 
decision output. This suppression mechanism based on inhibition 
of irrelevant representations is qualitatively similar to mechanisms 
for context-dependent decision-making hypothesized in previous 
hand-crafted neural circuit models8,9.

We verified that the suppression mechanism revealed in the latent 
circuit connectivity depended significantly on the RNN responses 
beyond the constraints imposed by the task alone (Extended Data Fig. 1 
and Methods), suggesting that this mechanism reflects the dynamics 
of the RNN. We therefore proceeded to validate the inferred circuit 
mechanism directly in the RNN in three ways: in the RNN activity, in 
the RNN connectivity and by confirming behavioral effects of the RNN 
perturbations predicted by the latent circuit model.

First, we verified the signatures of the suppression mechanism in 
the RNN activity. We projected RNN responses onto the columns of Q, 
which represent RNN activity patterns that correlate with the activity 
of nodes in the latent circuit (Fig. 3c). By projecting RNN responses 
onto the difference of two columns of Q corresponding to the context 
nodes, we obtain a one-dimensional latent variable correlated with the 
activity difference of the motion context and color context nodes in 
the latent circuit. This projection shows RNN trajectories diverging 
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Fig. 2 | RNN model of context-dependent decision-making. a, Context-
dependent decision-making task. Each trial begins with a brief baseline period 
(hold). A context cue then briefly appears to indicate either the color or motion 
context for the current trial (context cue). After a short delay (delay), a sensory 
stimulus appears that consists of motion and color features (stimulus), and a 
response can be made at any time. The right motion and red color are associated 
with the right choice, and the left motion and green color are associated with the 
left choice. The strength of motion and color stimuli varies from trial to trial as 
quantified by the motion and color coherence. In the color context, the choice 
should be made according to the color and ignoring the motion stimulus and 

vice versa in the motion context. Thus, the same stimulus can map on different 
responses depending on the context (response; yellow circle). b, Architecture 
of the RNN model. The RNN consists of 50 recurrently connected units, 40 
excitatory and 10 inhibitory. The RNN receives six time-varying inputs u: two 
inputs indicating the color and motion context and four inputs representing 
motion (left and right) and color (red and green) stimuli. We trained the RNN to 
report its decision by elevating one of two outputs z, corresponding to the left 
versus right choice. c, Psychometric functions show that the RNN successfully 
learns the task; it responds to relevant stimuli and ignores irrelevant stimuli in 
each context. d, RNN connectivity after training appears complex.
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into opposite directions in state space according to context. Next, 
the choice axis is the difference of two columns of Q corresponding 
to the left and right choice nodes in the latent circuit. Projecting RNN 
activity onto the choice axis reveals trajectories separating according 
to choice regardless of context. Further, the motion axis is the differ-
ence of columns of Q corresponding to the left and right motion nodes, 
and the color axis is the difference of columns of Q corresponding to 
the red and green color nodes. Projections of RNN activity onto the 
motion and color axes reveal representations of relevant sensory 
stimuli, whereas representations of irrelevant stimuli are suppressed. 
In particular, along the color axis, RNN trajectories separate according 
to color coherence only on color context trials, whereas on motion 
context trials, the activity along this axis is suppressed. Similarly, 
activity along the motion axis is suppressed on color context trials. 
The suppression of irrelevant sensory representations in RNN activ-
ity is consistent with the inhibitory mechanism revealed in the latent 
circuit connectivity wrec.

Second, we used the connectivity relationships Eq. (5) to directly 
validate the latent circuit mechanism in the RNN connectivity. We 
conjugated the RNN connectivity matrices with the embedding matrix 
Q. The resulting matrices closely match the connectivity in the latent 

circuit (Fig. 3d; correlation coefficient r = 0.89). This agreement con-
firms that the latent connectivity structure indeed exists in the RNN.

Finally, to ultimately validate that this latent connectivity structure 
supports the behavioral task performance, we tested whether pat-
terned perturbations of the RNN connectivity (Eq. (6)) produced the 
same behavioral effects as predicted by the latent circuit model. We 
consider two perturbations designed to test the inhibitory mechanism. 
The first perturbation ‘turns off’ the context mechanism by weaken-
ing the inhibitory connections from a context node to sensory nodes 
representing irrelevant stimuli in that context (Fig. 4a). In the RNN, this 
perturbation maps onto a rank-one change in the recurrent connectiv-
ity (Fig. 4b). The latent circuit mechanism predicts that weakening the 
inhibitory connections from the motion context node to sensory nodes 
representing color would make the circuit sensitive to the irrelevant 
color information on motion context trials. Indeed, weakening these 
connections in the latent circuit produced the predicted behavioral 
effect in the psychometric function, visible as a rotation of the decision 
boundary on motion context trials (Fig. 4a). Perturbations of the RNN 
connectivity along the corresponding pattern produced similar behav-
ioral effects (Fig. 4b), confirming that this connectivity pattern imple-
ments suppression of irrelevant sensory representations in the RNN.
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Fig. 3 | Latent circuit mechanism in the RNN performing a context-dependent 
decision-making task. a, Connectivity matrices of the latent circuit and the 
embedding matrix Q inferred from the responses of the RNN performing the 
context-dependent decision-making task. b, The recurrent connectivity wrec in 
the latent circuit reveals an inhibitory mechanism for context-dependent 
decision-making. The pattern of excitatory connections from sensory nodes  
to choice nodes implements two alternative stimulus–response mappings  
(red arrows in the circuit diagram and red squares in the connectivity matrix). 
The pattern of inhibitory connections from the context nodes to the sensory 
nodes implements a suppression mechanism that inhibits the irrelevant 
stimulus–response mapping in each context (blue arrows in the circuit diagram 
and blue squares in the connectivity matrix). The schematic of the connectivity 
matrix (top left) shows only the eight key connections for clarity. The circuit 

diagram depicts the full latent circuit connectivity in a. c, Projections of RNN 
responses onto low-dimensional subspace defined by the columns of embedding 
Q. By construction, the activity along each projection correlates with the activity 
difference of two nodes in the latent circuit. Projections onto axes corresponding 
to motion and color nodes reveal suppression of irrelevant stimulus 
representations. The gray shading indicates the duration of sensory stimulus 
presentation (motion and color axis) and response period (choice axis). Lines 
and shaded error bars represent the mean and standard deviation across trials, 
respectively. d, We extend Q to an orthonormal basis Q̂ for ℝN  and transform the 
RNN connectivity into this basis Q̂ (left). The submatrices corresponding to the 
first n = 8 rows and columns (black rectangles, enlarged on the right) closely 
match the latent circuit connectivity in a (correlation coefficient r = 0.89).
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The second perturbation ‘turns off’ one of the stimulus–response 
mappings by weakening the excitatory connection from a sensory node 
to a choice node. The latent circuit mechanism predicts that weakening 
the excitatory connection from the red color node to the right choice 
node (Fig. 4c) would impair the network’s ability to make right choices 
on the color context trials. Weakening this connection in the latent cir-
cuit indeed decreased the frequency of right choices on color context 
trials (Fig. 4c). This perturbation maps onto a rank-one connectivity 
perturbation in the RNN, which produced similar behavioral effects 
(Fig. 4d). This result confirms both the behavioral relevance of the 
latent sensory representation and the excitatory mechanism by which 
it drives choices in the RNN.

Together, these results confirm that the RNN uses the suppression 
mechanism in which context representations inhibit irrelevant sensory 
representations. This mechanism is reflected in the low-dimensional 
dynamics revealed by projecting RNN activity onto axes defined by the 
latent circuit embedding Q. We identified this mechanism as a latent 
low-dimensional structure in the RNN connectivity and ultimately 
validated it by confirming behavioral effects of the RNN connectivity 
perturbations.

Space of latent circuit mechanisms
We next asked whether RNNs trained on the same task arrive at different 
circuit solutions for context-dependent decision-making. The latent 
circuit inference enables us to determine whether different RNNs use 
the same circuit mechanism. Although two RNNs trained on the same 
task may have distinct high-dimensional connectivity, the latent circuit 
inference can reveal whether these RNNs use similar low-dimensional 
connectivity structure to generate task-relevant dynamics. Therefore, 
we assessed the similarity of task solutions in RNNs by comparing their 
low-dimensional latent connectivity.

To explore the space of circuit mechanisms, we trained an ensem-
ble of 200 RNNs with randomly initialized connectivity to the same 
level of task performance (r2 = 0.93 ± 0.01, coefficient of determina-
tion for the RNN and target outputs, mean ± s.d. across networks; 
Supplementary Fig. 4). For each of these RNNs, we fitted an ensemble 

of 100 latent circuit models starting with random initializations of the 
parameters for latent connectivity and embedding Q and selected 
10 latent circuits with the highest fit quality on the test data, which 
formed the set of converged solutions (Methods). All converged 
latent circuits provided accurate fits of the RNN responses (Sup-
plementary Fig. 4).

To visualize the space of latent circuit solutions, we applied a 
principal component analysis to the flattened connectivity matrices 
wrec and projected the data onto the first two principal components, 
which accounted for 42% of total variance (Fig. 5a). The converged 
latent circuits fitted to the responses of a single RNN fell within a close 
proximity of each other (Fig. 5a), and their connectivity was highly 
correlated (r = 0.98 ± 0.02, mean correlation coefficient between con-
nectivity weights of the best and other converged circuits, mean ± s.d. 
across RNNs; Methods), which indicates the uniqueness of the latent 
circuit mechanism in each particular network. The variability of task 
solutions was much greater across RNNs; the variance of latent connec-
tivity across all RNNs was about four times the average variance in latent 
connectivity across multiple fits of a single RNN (variance ratio of 4.3).

The latent circuit solutions from all RNNs formed three major 
clusters. RNNs in all clusters had similar task performance (Supple-
mentary Fig. 5). The correlation coefficients between the latent con-
nectivity of all RNNs within a cluster and the mean connectivity of that 
cluster was high (mean correlation coefficients: r = 0.94 cluster 1, r = 0.9 
cluster 2 and r = 0.91 cluster 3; Extended Data Fig. 2), which indicates 
that the RNNs within each cluster had a similar circuit mechanism. To 
test whether circuit mechanisms varied between RNNs from different 
clusters, we sampled latent circuits randomly from the ensemble and 
fitted these circuits to responses of randomly sampled RNNs, optimiz-
ing only the embedding matrix Q while holding the latent circuit con-
nectivity fixed. These latent models produced a significantly worse fit 
when the latent circuit and the target RNN were sampled from different 
clusters than from the same cluster (Extended Data Fig. 2m; one-sided 
Mann–Whitney U-test, U = 52, 593, P < 10−10), confirming differences in 
circuit mechanisms across clusters. This result further reinforces that 
task alone does not uniquely determine the circuit mechanism, and 
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Fig. 4 | Validating the circuit mechanism via perturbations of RNN 
connectivity. a, Perturbation of the latent circuit connectivity that weakens 
the inhibitory connection from the motion context node to the sensory nodes 
representing color (left). This perturbation affects behavior, making the latent 
circuit sensitive to irrelevant color information, which is visible as a rotation of 
the decision boundary on motion context trials in the psychometric function 
(right). b, The perturbation in a of the latent circuit connectivity maps onto rank-
one patterned connectivity perturbation in the RNN (left). This perturbation 

affects the RNN psychometric function as predicted by the latent circuit 
model (right). c, Perturbation of the latent circuit connectivity that weakens 
the excitatory connection from the node representing red color to the right 
choice node (left). The effect of this perturbation on behavior is a decrease in 
the frequency of right choices on color context trials (right). d, Translation 
of the latent circuit perturbation in c onto rank-one perturbation of the RNN 
connectivity (left) confirms the predicted behavioral effect in the RNN (right).
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not any connectivity sufficient to perform the task can account for a 
specific set of neural responses in an RNN.

To understand how the circuit mechanisms vary across clusters, 
we examined the mean latent connectivity matrix of each cluster. The 
mean connectivity matrices revealed circuits that all showed signatures 
of the suppression mechanism, with context nodes inhibiting irrelevant 
sensory nodes (Fig. 5b). In the main cluster, the circuits were balanced 
and symmetric, with approximately equal strength of excitation or 
inhibition between nodes representing different contexts and stimu-
lus–response mappings. This balance was reflected in the dynamics 
and representations of stimuli (Fig. 5c). In the two other clusters, the 
circuits showed asymmetry in connectivity, with stronger inhibition 
from context to some sensory nodes counterbalanced by stronger 
self-excitation for these sensory nodes. These asymmetries were con-
sistently reflected in dynamics and the representations of stimuli, 
which showed a bias toward the left or right stimulus representations 
depending on the cluster. Although the circuit solutions in two of the 
clusters exploit asymmetries in the representations of sensory evi-
dence, they still operate by an inhibitory mechanism in which irrelevant 
responses are suppressed (Extended Data Fig. 3).

The inhibitory suppression mechanism that we consistently found 
across RNNs may seem distinct from a dynamical selection vector 
mechanism previously identified in RNNs trained on a similar task, 
which apparently does not require suppression of irrelevant sensory 
responses19. We analyzed dynamics in our RNNs and found the same 
selection vector mechanism (Extended Data Fig. 4), indicating that 
the dynamical selection vector mechanism is a local linear descrip-
tion of the inhibitory circuit mechanism. Furthermore, we found the 
same inhibitory suppression mechanism in RNNs trained without 
constraining their inputs to be orthogonal (Supplementary Fig. 6) and 
in RNNs with different biologically plausible nonlinearities (Extended 
Data Figs. 5 and 6). Thus, the space of latent circuit solutions found 
by all our RNN models of context-dependent decision-making can be 
characterized by a common suppression mechanism.

Representations of irrelevant stimuli in the PFC
Our finding that RNNs use the inhibitory mechanism for context- 
dependent decision-making appears in conflict with previous work, 

which suggested that in both RNNs and the PFC, irrelevant sensory 
responses are not significantly suppressed19,21,51. This conclusion 
was derived using dimensionality reduction methods that fit neural 
responses with regression models19,21,41–43 to find low-dimensional 
projections that best correlate with task variables (Fig. 1b). In these 
projections, task variables do not interact but are demixed in orthogo-
nal dimensions. By contrast, representations of task variables in the 
latent circuit model interact via recurrent connectivity to implement 
the computations necessary to solve the task. We therefore sought to 
determine whether the latent circuit and regression models identify 
different task representations in the same PFC responses.

We fitted the latent circuit model to the same dataset of PFC 
recordings during context-dependent decision-making as in the pre-
vious studies19,21. The dataset consists of several hundred PFC neu-
rons (n = 727 and 574 for monkeys A and F, respectively) recorded 
from two rhesus monkeys performing a context-dependent 
decision-making task19 (Fig. 2a). We fitted latent circuit models to 
smoothed condition-averaged PFC responses during a 750-ms win-
dow starting 100 ms after the stimulus onset19 (Methods). The latent 
circuit model provided good fits of PFC responses projected onto the 
low-dimensional subspace spanned by the columns of the inferred 
embedding matrix Q for both monkeys (r2 = 0.88 and 0.76 on test data 
for monkeys A and F, respectively; Extended Data Figs. 7a and 8a). The 
task subspace Q explained a smaller fraction of total variance in the PFC 
responses (11.0% and 7.0% for monkeys A and F, respectively) than in 
RNNs (Supplementary Fig. 2), which is comparable to previous reports 
of task-relevant variance in the PFC42 and reflects the high dimensional-
ity of PFC activity19.

Similar to the RNNs, projecting PFC responses onto the axes 
identified by the latent circuit model revealed significant suppres-
sion of stimulus representations when they were irrelevant (Fig. 6a 
and Extended Data Figs. 9a and 10; one-sided Mann–Whitney U-test; 
monkey A: motion P = 1.4 × 10−9 and U = 120, color P = 10−10 and U = 83; 
monkey F: motion P = 1.5 × 10−5 and U = 277, color P = 1.6 × 10−7 and 
U = 194; n = 36). This suppression was not due to correlation of activity 
along the motion and color axes with choice (Extended Data Figs. 7b 
and 8b). Consistent with the suppression seen in projected PFC activity, 
the inferred latent circuit connectivity showed inhibitory connections 
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two nodes representing the motion stimulus in latent circuits with the mean 
connectivity matrices in b. These dynamics reveal asymmetric representations 
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represent the mean and standard deviation across trials, respectively.
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from context nodes to sensory nodes representing irrelevant stimuli 
in each context (Fig. 6b and Extended Data Fig. 9b). We confirmed 
that PFC responses significantly constrained the inferred latent con-
nectivity above the effect of the task (Extended Data Figs. 7c and 8c 
and Methods), indicating that the suppression mechanism reflects 
dynamics in the PFC data. The fact that the latent circuit model cor-
rectly performs the task and accurately fits projected PFC responses 
indicates that the suppression seen in the PFC data is sufficient to 
produce the context-dependent decision-making behavior.

The latent circuit model identified a subspace in PFC activity in 
which representations of irrelevant stimuli were suppressed, whereas 
regression methods uncovered subspaces in the same PFC data in which 
stimuli were nearly equally represented across contexts19,21. To confirm 
that this difference results from recurrent interactions among task 
variables in the latent circuit model, we fitted PFC data with a modified 
latent circuit model in which the latent recurrent connectivity was 
constrained to be 0. In this model, like in regression models, the latent 
variables do not causally influence each other. Indeed, this model found 
low-dimensional subspaces in which irrelevant sensory representa-
tions were less suppressed in both monkeys (Fig. 6c and Extended Data 
Fig. 9c), consistent with previous studies19,21. These subspaces explained 
a smaller amount of total variance in PFC responses (0.6% and 1.1% for 
monkeys A and F, respectively) than the latent circuit model. Thus, it 
is possible to find both types of representations in the PFC, and the 
question arises about which of these possible representations are 
causally linked to behavior.

Although we cannot directly assess the behavioral relevance of 
different representations in the PFC via perturbations, we can test the 
inhibitory suppression mechanism using neural activity on error trials. 
Specifically, the suppression mechanism predicts that the representa-
tions of irrelevant stimuli (along the motion and color axes identified 

by the latent circuit model) should be less suppressed on error than 
correct trials. We tested this prediction on incongruent trials on which 
the relevant and irrelevant stimuli point to opposite choices (Methods) 
because the errors on incongruent trials are more likely to result from 
a failure of the contextual mechanism than other factors (for example, 
attention lapse). The prediction was clearly borne out by the data; in 
both contexts for both monkeys, the irrelevant representations were 
significantly less suppressed on error than correct trials (Extended Data 
Figs. 7d and 8d; combined condition Mann–Whitney U-test; monkey A: 
P = 0.0086, U = 0.313 and n = 24 on color context trials and P = 0.0002, 
U = 0.354 and n = 24 on motion context trials; monkey F: P = 0.0002, 
U = 0.333 and n = 26 on color context trials and P < 10−10, U = 0.375 and 
n = 30 on motion context trials), suggesting that the representations 
identified by the latent circuit model in PFC activity are related to the 
behavioral task execution.

Behavioral relevance of low-dimensional representations
To further test for behavioral relevance of representations identified 
by different dimensionality reduction methods, we again turned to 
RNNs in which we can measure behavioral effects of arbitrary activity 
perturbations. We compared projections of RNN activity onto axes 
obtained from the latent circuit model and a linear decoder. We trained 
a linear decoder to predict the signed motion coherence on each trial 
from RNN activity (Methods). The decoding weights provide an axis in 
the RNN state space such that a projection onto this axis correlates with 
the motion coherence. By projecting RNN responses onto the decoder 
axis, we find a strong representation of irrelevant motion stimulus on 
color context trials without noticeable suppression (Fig. 7a). Thus, as 
in the PFC, irrelevant sensory representations in our RNN appear not 
suppressed along the decoder axis, whereas they appear suppressed 
along the axis obtained from the latent circuit model (Fig. 7b).
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Fig. 6 | Representations of irrelevant stimuli in the PFC during context-
dependent decision-making. a, Projection of PFC responses from monkey 
A onto task subspace defined by the columns of the embedding matrix Q in 
the latent circuit model fitted to the PFC data. The four latent circuit axes 
correspond to context, choice, motion and color representations, as in Fig. 3c. 
Projections onto motion and color axes reveal that representations of stimuli 
in the PFC are suppressed when they are irrelevant. Lines and shaded error bars 
represent the mean and standard deviation across trials, respectively. b, Latent 
circuit connectivity inferred from PFC responses (top) shows an inhibitory 
mechanism similar to that observed in RNNs (Fig. 5b). The checkerboard 
pattern of connections from sensory nodes to choice nodes implements the 
alternative stimulus–response mappings. The pattern of inhibitory connections 

from context nodes to sensory nodes implements a suppression mechanism, 
which inhibits the irrelevant stimulus–response mapping in each context. The 
standard deviation of connectivity weights across the top ten latent circuit fits 
to the same PFC data quantifies the estimation uncertainty for each connection 
(bottom); M, motion; C, color; R, right; L, left; Re, red; G, green. c, The latent 
circuit model in which the latent recurrent connectivity matrix is constrained 
to be 0 (wrec ≡ 0) identifies a different task subspace in which projections of PFC 
responses onto motion and color axes show little suppression of motion and 
color representations on trials when they are irrelevant, reproducing results 
from previous studies19,21. Lines and shaded error bars represent the mean and 
standard deviation across trials, respectively.
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How can we reconcile these qualitatively distinct perspectives 
on representations of irrelevant stimuli within the same RNN? We 
hypothesized that the appearance of irrelevant stimulus representa-
tions is possible because the linear decoder compromises behavio-
ral relevance for decoding accuracy. To test this idea, we stimulated 
RNN units with activity patterns aligned with the axes obtained from 
the linear decoder and the latent circuit model. If the corresponding 
activity patterns are behaviorally relevant, we expect the stimulation 
to have a substantial effect on psychometric functions. Specifically, 
stimulating the representation of the right motion stimulus should 
increase the proportion of right choices, shifting the decision boundary 
on motion context trials. As expected, driving RNN activity along the 
motion axis of the latent circuit model shifted the decision boundary 
on motion context trials (Fig. 7d). By contrast, stimulation of the same 
magnitude along the decoder axis had little effect on the psychomet-
ric function (Fig. 7c). The irrelevant stimulus representations exist 
along the decoder axis but do not drive the behavioral output. For 
context-dependent decision-making, we conclude that the dynamics 
revealed by the decoder have little behavioral relevance and thus do 
not invalidate the inhibitory mechanism identified by the latent circuit 
model. Our results indicate that ‘demixing’ representations of task 
variables19,21,42 may not be the right objective for identifying behavio-
rally relevant patterns in neural activity and may provide a misleading 
picture of computation.

Discussion
Single neurons in higher cortical areas show complex heterogene-
ous responses during cognitive tasks, posing a challenge for identi-
fying mechanisms of cognitive functions. Our latent circuit model 
accounts for single-neuron heterogeneity via dimensionality reduction 
that incorporates low-dimensional circuit dynamics in its latent vari-
ables. We show that low-dimensional circuit mechanisms can explain 
task-relevant dynamics in high-dimensional networks and establish 
feasibility of inferring these mechanisms from neural response data. 
Our theory for interpreting the latent circuit connectivity as a low-rank 
connectivity in RNNs enables causally validating low-dimensional 
circuit mechanisms via activity and connectivity perturbations in 
high-dimensional networks. The latent circuit inference can be broadly 
applied to identify circuit mechanisms for different cognitive tasks 
from neural response data (Supplementary Fig. 7) and opens new pos-
sibilities for causally testing these mechanisms in future experiments.

Although previous studies extensively modeled neural responses 
using various latent dynamical systems, our work demonstrates fea-
sibility of fitting neural responses with low-dimensional recurrent 
circuits. Most methods fitting low-dimensional dynamical systems 
to neural data do not explicitly model task inputs and behavior and 
do not ground the inferred dynamics in the underlying network 
connectivity32,33,40,52,53. On the other hand, high-dimensional RNN 
architectures serve as intermediate mechanistic models of neural 
responses, which generate latent dynamics from high-dimensional 
recurrent connectivity25–29. Although these models can incorporate 
task inputs and behavioral outputs27–29,51, their high-dimensional con-
nectivity is not uniquely constrained by low-dimensional data, limit-
ing possible insights into circuit mechanisms transforming sensory 
inputs to behavior. Our results motivate future work incorporating 
low-dimensional recurrent circuits as latent dynamics generators 
within these model architectures, which will enable combining their 
ability of fitting single-trial neural activity26,29 with the uniqueness and 
interpretability furnished by the latent circuit model.

By relating connectivity to neural dynamics and behavior, the 
latent circuit model extends the causal predictive power of classical 
neural circuit models to the study of mechanisms of cognitive functions 
in high-dimensional networks. Although dynamical mechanisms have 
been studied in RNNs by linearizing the RNN flow field around fixed 
points19,31, these dynamical mechanisms do not specify how a particular 
fixed-point configuration arises from the RNN connectivity. Although 
dynamical mechanisms can predict changes in activity under pertur-
bations of the dynamical system’s state or inputs, circuit mechanisms 
provide additional leverage as they can also predict how the dynamical 
system itself will change under perturbations of activity or connectivity 
within the network. The causal predictive power of the latent circuit 
model is further supported by its ability to predict RNN dynamics and 
behavior for out-of-distribution inputs (Supplementary Fig. 8).

We find that RNNs do not necessarily find qualitatively distinct 
solutions to cognitive tasks from mechanisms in low-dimensional neu-
ral circuit models. We show that low-dimensional mechanisms can be 
found in large RNNs if connectivity is viewed in the appropriate basis. 
In other words, just as dynamics can be understood in terms of latent 
variables54, connectivity can be understood in terms of interactions 
between these latent variables. This perspective is qualitatively similar 
to previous work on engineering low-dimensional task solutions in 
RNNs with low-rank connectivity47,49,55. However, it was unclear whether 
low-rank RNNs use mechanisms similar to classical circuit models or 
implement truly novel solutions that emerge only in high-dimensional 
nonlinear systems. Our work explicitly relates low-dimensional recur-
rent circuits and low-rank connectivity in RNNs and enables inferring 
latent circuit structure in generic RNNs trained without low-rank con-
nectivity constraints. We find that these generic RNNs also use low-rank 
connectivity to perform the task, although their full high-dimensional 
connectivity is not necessarily low rank.
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We found that RNNs trained on a context-dependent decision- 
making task use a suppression mechanism in which context nodes 
inhibit irrelevant sensory nodes. The inhibitory suppression mecha-
nism revealed by the latent circuit model is qualitatively similar to 
previous neural circuit models of how PFC flexibly switches between 
alternative stimulus–response mappings8–10,44,45. Thus, RNNs do not 
find qualitatively distinct solutions to this task, and complex selectiv-
ity of single neurons has a simple explanation as a linear mixing of the 
low-dimensional latent inhibitory circuit mechanism. Although we 
found a variety of task solutions across RNNs trained with the same 
hyperparameters to the same performance level, all these solutions 
were based on the same suppression mechanism. In general, a solution 
to which an RNN converges may depend on numerous hyperparameters 
(for example, for initialization and regularization), and the latent cir-
cuit inference offers a quantitative tool for characterizing how these 
hyperparameters influence the space of task solutions.

The latent circuit model revealed a suppression of irrelevant 
sensory representations in PFC responses of monkeys performing a 
context-dependent decision-making task. By contrast, correlation- 
based dimensionality reduction methods found no significant suppres-
sion of irrelevant stimuli in the same data19,21. This difference results 
from recurrent interactions among task variables in the latent circuit 
model, and dimensionality reduction methods that do not incorporate 
these interactions are biased toward uncovering sensory representa-
tions that are not modulated by context. Considering interactions 
among task variables is crucial as they implement the computations 
necessary to solve the task, and omitting them provides a misleading 
picture of computation. We show that representations of irrelevant 
stimuli also exist in RNNs that provably implement an inhibitory sup-
pression mechanism, but these representations do not causally drive 
choices. Thus, inhibitory mechanisms for cognitive flexibility are 
compatible with the existence of irrelevant stimulus representations 
in the PFC.

The latent circuit model opens a route for interpreting circuit 
mechanisms in high-dimensional networks. A prerequisite for a model 
to be interpretable is its uniqueness40. Whereas low-dimensional data do 
not uniquely constrain the full high-dimensional connectivity in RNNs, 
we show that we can uniquely recover the latent low-rank connectivity 
within a high-dimensional network, which therefore can be reliably 
interpreted. We operationally define interpretation of the circuit as 
the ability to achieve prescribed behavioral effects through perturba-
tions of specific nodes or connections (Figs. 4 and 7). In general, small 
recurrent circuits can generate complex dynamics that are difficult to 
intuit from connectivity alone56. In such cases, we can dissect the circuit 
function by analyzing the effects of connectivity perturbations on the 
dynamics and behavior57. Our work translates such circuit dissection 
methods56,57 to high-dimensional networks in which, unlike in small 
circuits, individual connections do not carry specific functions, but 
instead these functions arise from distributed connectivity patterns.

Interpreting circuit mechanisms is more accessible in 
low-dimensional tasks, which have been extensively used to probe 
functions of higher cortical areas. Cumulative findings suggest that 
similar dynamical and circuit motifs are used across many tasks, and, 
moreover, solutions to more complex tasks can arise by composing 
simple motifs1,24,58. Consistent with this idea, we find that RNNs trained 
on different tasks use a similar inhibitory control mechanism (Supple-
mentary Fig. 7), which may generalize to other cognitive control tasks 
as well. Therefore, low-dimensional circuit mechanisms may provide 
the primitives for building more complex cognitive functions, and 
our work suggests a path forward for interpreting these mechanisms 
in neural data.
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Methods
Fitting a latent circuit model
We fit the latent circuit model Eqs. (1)–(3) to neural response data y by 
minimizing the mean squared error loss function,

L = ∑
k
∑
t
∥ ytk −Qxtk∥2+ ∥ ztk −woutxtk∥2, (7)

using custom Python code59. Here, k indexes the trials, t indexes the 
time within a trial, and Q is an orthonormal embedding matrix. Because 
the variable x depends implicitly on the latent circuit parameters wrec 
and win, the minimization of L is a nonlinear least squares optimization 
problem60 in which we simultaneously search for a behaviorally rele-
vant projection of the high-dimensional activity and a low-dimensional 
neural circuit that generates dynamics in this projection. Because 
orthonormal matrices define a nonlinear submanifold within the space 
of all matrices, minimizing L corresponds to solving a constrained 
optimization problem over this submanifold. To transform it into an 
unconstrained problem, we use the Cayley transform to parameterize 
orthonormal matrices by the linear space of skew symmetric matrices61,

Q = (I + A)(I − A)−1πn, (8)

where πn represents projection onto the first n columns, and A is skew 
symmetric. We parameterize A by an arbitrary square N × N matrix B,

A = B − BT. (9)

With these reparameterizations, we can minimize L over the vector 
space of square matrices B. The parameterization of a skew symmetric 
matrix A with the auxiliary matrix B has a degeneracy because A has 
only N(N − 1) / 2 distinct elements. We did not attempt to eliminate this 
degeneracy because B is an auxiliary matrix, and we did not observe 
any degeneracy arising in matrix Q during fitting.

At each step of the optimization, we generate a set of trajectories 
x from the latent circuit dynamics and embed these trajectories using 
the matrix Q. The parameters B, wrec, win and wout are then updated to 
minimize L. We perform this minimization using PyTorch and the Adam 
optimizer with default values 0.9 and 0.999 for the decay rate of the 
first and second moment estimates, respectively, a learning rate of 0.02 
and a weight decay of 0.001. We use a minibatch size of 128 trials. We 
stop the optimization when the loss has not improved by a threshold 
of 0.001 after a patience of 25 epochs. We used the Python software 
package Seaborn for visualizing model parameters and responses 
after training.

We initialize the recurrent matrix wrec from a uniform distribu-
tion centered on 0 with a standard deviation of 1/n. We initialize win 
with zeros except for positive entries along the diagonal on connec-
tions from inputs u to their corresponding nodes and wout with zeros 
except for positive entries on connections from choice nodes to their 
corresponding outputs z. We initialize the entries of matrix B from a 
uniform distribution on [0, 1].

When fitting the latent circuit model, we found some amount of 
variability in solutions across multiple optimization runs with different 
initialization. To control for this variability, we fitted a large ensemble 
of latent circuit models (n = 100) with different initialization of the 
parameters for latent connectivity and embedding Q for each RNN 
model. This ensemble of latent circuit models for a single RNN has 
variable fit quality because many optimization runs do not converge 
to the optimal solution (which is typical for nonconvex optimization). 
Therefore, we selected the best ten latent circuit models from this 
ensemble in terms of fit quality on held out test data, which formed 
a set of converged solutions (Fig. 5a). To quantify the uniqueness of 
the latent circuit solution in each RNN, we computed the correlation 
coefficients between the recurrent connectivity weights of the best 

model and the remaining nine converged models. We can use the 
correlation coefficient because the identity of each node in the latent 
circuit is defined by its input and output connectivity, eliminating any 
permutation symmetries.

Testing the dependence of latent connectivity on neural 
responses
To determine whether the inferred latent circuit connectivity sig-
nificantly depends on neural response data beyond the constraints 
imposed by the task alone, we performed a permutation test (Extended 
Data Figs. 1, 7c and 8c), which proceeds in three steps. First, we fit N 
latent circuit models to neural responses and select the best model in 
terms of fit quality on held out test data. We then compute the corre-
lation coefficients between recurrent connectivity of the best model 
and all other models. The distribution of these correlation coefficients 
estimates how variable the latent connectivity is across models fitted 
to the original neural responses. Second, we shuffle neural responses 
N times and fit a latent circuit model to each shuffle, resulting in N 
latent circuit models. Our shuffling procedure randomly permutes 
neural responses with respect to trial conditions while preserving the 
input–output relationship on each trial so that the fitted latent circuit 
models can still perform the task. We confirm that the latent circuit 
models fitted to the shuffled RNN responses perform the task at high 
accuracy (Extended Data Fig. 1). These latent models serve as a control 
to assess whether the inferred latent connectivity emerges merely from 
the task constraints alone, and they should not be viewed as models 
of any specific high-dimensional network. We then compute the cor-
relation coefficients between the connectivity of all models fitted to 
the shuffled data and the best model from the original data fit. Third, 
we use a Mann–Whitney U-test to determine whether the correlation 
coefficients are significantly smaller for models fitted to the shuffled 
responses than original neural responses. This outcome would indi-
cate that models fitted to shuffled neural responses use more diverse 
connectivity to perform the task than models fitted to the original 
data; thus, neural responses significantly constrain the inferred con-
nectivity above the effects of the task. We used the same test for both 
RNN (N = 500; Extended Data Fig. 1) and PFC data (N = 1,000; Extended 
Data Figs. 7c and 8c).

Relationship between connectivity of the RNN and  
latent circuit
We consider RNNs of the form

τ ̇y = −y + [Wrec y +Winu]+. (10)

Here, [⋅]+ is a rectified linear (ReLU) activation function, τ is a time 
constant, and u are external task inputs. Wrec and Win are the recurrent 
and input connectivity matrices, respectively. We read out a set of 
task outputs z from the network activity via the output connectivity 
matrix Wout,

z = Wout y. (11)

We derive a relationship between the connectivity matrices of the 
RNN and latent circuit, which allows us to interpret the latent circuit 
connectivity as a latent connectivity structure in the RNN. To derive 
this relationship, we differentiate the embedding Eq. (1) with respect 
to time and obtain the relationship between the vector fields of the 
RNN and latent circuit,

V( y) = Qv(x).

Here, the vector fields ̇y = V( y)  of the RNN and ̇x = v(x)  of the latent 
circuit are given by Eqs. (10) and (2), respectively. This equation states 
that the subspace spanned by the columns of Q is an invariant subspace 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01869-7

of the high-dimensional system; that is, the vector field at any point in 
this subspace lies entirely in this subspace. We then use the orthonor-
mality condition QTQ = I to obtain

QTV(Qx) = v(x).

Substituting the vector fields Eq. (10) and Eq. (2) in this relation gives 
us the equality

QT[WrecQx +Winu]+ = [wrecx +winu]+. (12)

Because this is an equality of two piecewise-linear systems, it holds for 
each local linear piece individually. In particular, assuming that both 
the inputs u and Win are positive, we take x sufficiently near 0, where 
the argument of the nonlinearity is positive for all units. In this local 
linear piece, we have the equality of linear systems

QTWrecQx +QTWinu = wrecx +winu. (13)

If we assume that this equality holds in some open set, then we can 
equate the terms to obtain an equality of connectivity matrices:

QTWrecQ = wrec, (14)

QTWin = win. (15)

This assumption is likely not fully satisfied in the setting of cognitive 
tasks because the sets of inputs u and latent states x are typically low 
dimensional. Therefore, the above equalities may hold only approxi-
mately. In addition, the equality of piecewise-linear dynamical sys-
tems Eq. (12) depends on the correspondence between trajectories of 
the RNN and latent circuit Eq. (1). Because, in practice, we search for 
the latent circuit by minimizing the loss function L, if L is not exactly 
equal to 0, then Eq. (1) and consequently Eqs. (14) and (15) hold only 
approximately.

We derived the analytical relations between connectivity in the 
latent circuit and RNN (Eqs. (14) and (15)) assuming that the latent 
circuit provides a good fit of RNN responses and that their dynamical 
equations (Eqs. (2) and (10)) have the same nonlinearity. In general, it 
is unclear whether a latent circuit model can satisfactorily fit responses 
of a high-dimensional network that has a different nonlinearity and to 
what extent the relation between their connectivity will hold in this 
case. To test whether our results extend to networks with a different 
biologically plausible nonlinearity, we trained RNNs that had a Softplus 
activation function f(x) = g

β
log(1 + eβx) for a range of parameter β and 

also with varying gain g across units. We fitted responses of these RNNs 
with our latent circuit model that had a rectified linear (ReLU) activa-
tion function and found that this architecture mismatch did not sig-
nificantly affect the fit quality and the relationship between 
connectivity (Extended Data Figs. 5 and 6).

To understand how perturbations of connectivity in the latent 
circuit map onto the RNN, we view perturbations as vectors in the 
space of matrices. We denote A ⋅ B the dot product between the matri-
ces A and B represented as vectors in the space of matrices; that is,  
A ⋅ B = ∑i∑jAijBij. Using Eqs. (14) and (15), we then translate connectivity 
perturbations from the latent circuit to the RNN:

w ji = w ⋅ δji = (QTWQ)ji (16)

=
N
∑
k=1

Qkj (
N
∑
l=1

WklQli) (17)

=
N
∑
k=1

N
∑
l=1

WklQkjQli (18)

=
N
∑
k=1

N
∑
l=1

Wkl(q jqT
i )kl (19)

= W ⋅ q jqT
i (20)

= W ⋅Qe j(Qei)
T (21)

= W ⋅QδjiQT, (22)

where qi is the ith column of Q, and ei is the ith standard unit vector. This 
chain of equalities shows how to translate perturbations of the latent 
circuit connectivity in the direction δji onto rank-one connectivity 
perturbations in the RNN,

w ⋅ δji = W ⋅QδjiQT. (23)

Thus, to perturb the latent connection wji, we perturb the matrix W 
in the direction QδjiQ

T. In other words, to increase the dot product 
between W and QδjiQ

T in the space of matrices, we add multiples of 
QδjiQ

T to W. Any perturbation orthogonal to QδjiQ
T does not change 

the dot product and hence has no effect on the latent connection wji.

RNN simulations
We simulate dynamics of time-discretized RNNs using the general 
framework for modeling cognitive tasks22. We consider RNNs with 
positive activity and N = 50 recurrent units. We obtained the same 
results with networks consisting of N = 150 units. We discretize the 
RNN dynamics Eq. (10) using the first-order Euler scheme with a time 
step Δt and add a noise term to obtain

yt = (1 − α)yt−1 + α[Wrec yt−1 +Winut +√
2
ασrecξt]

+
. (24)

Here, α = Δt/τ and ξt ∼ 𝒩𝒩(0, 1) is a random variable sampled from the 
standard normal distribution. We set the time constant τ = 200 ms, the 
discretization time step Δt = 40 ms, and the noise magnitude σrec = 0.15. 
When fitting RNN responses with the latent circuit model, we discretize 
the latent circuit dynamics Eq. (2) using the same hyperparameter α 
and the same noise magnitude as was used when training the RNN. The 
input and output matrices are constrained to have positive entries. The 
recurrent matrix is constrained to satisfy Dale’s law with 80% excitatory 
units and 20% inhibitory units. For RNNs shown in the main text, the 
concatenation of input and output matrices is constrained to be 
orthogonal. However, our conclusions do not depend on this con-
straint, and we find similar latent circuit fits and the inhibitory mecha-
nism in RNNs trained with unconstrained inputs (Supplementary 
Fig. 6). The RNN simulation and training were implemented in Python 
using the software package PyTorch.

Context-dependent decision-making task
In the context-dependent decision-making task, at the beginning of 
each trial, a context cue briefly appears to indicate either the color 
or motion context for the current trial. After a short delay, a sensory 
stimulus appears that consists of motion and color features. The right 
motion and red color are associated with the right choice, and the left 
motion and green color are associated with the left choice. The strength 
of motion and color stimuli varies from trial to trial as quantified by the 
motion and color coherence. In the color context, the choice should be 
made according to the color, ignoring the motion stimulus, and vice 
versa in the motion context.

To model the context-dependent decision-making task, the 
network receives six inputs u corresponding to two context cues  
(um: motion context; uc: color context) and sensory evidence streams 
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for motion (um,L: motion left; um,R: motion right) and color (uc,R: color 
red; uc,G: color green). The network has two outputs, z1 and z2, for which 
we define two targets ztarget,1 and ztarget,2. Each trial begins with a presenta-
tion of a context cue from t = 320 to t = 1, 000 ms. On motion context 
trials, the cue input is set to um = 1.2 and uc = 0.2 and vice versa on color 
context trials. During this epoch, we require that the network does not 
respond on the outputs by setting ztarget = 0.2. After a delay of 200 ms, so 
that the network must maintain a memory of the context cue, the inputs 
corresponding to motion and color sensory evidence are presented at 
t = 1,200 ms for the remaining duration of the trial. From 2,250 ms after 
the start of the trial and extending to the end of the trial, the targets are 
defined by ztarget,1 = 1.2 and ztarget,2 = 0.2 for right choices and vice versa 
for left choices. The strength of sensory evidence for motion and color 
varies randomly from trial to trial controlled by the stimulus coherence. 
We use motion coherence mc and color coherence cc ranging from −0.2 
to 0.2 chosen from the set {−0.2, −0.12, −0.04, 0.04, 0.12, 0.2}. For each 
coherence level, the motion and color inputs are given by

um,L =
1−mc

2
, um,R =

1+mc

2
,

uc,G =
1−cc
2
, uc,R =

1+cc
2
.

With these definitions, positive motion and color coherence provide 
evidence for the right choice, and negative motion and color coherence 
provide evidence for the left choice. At each simulation time step, we 
add an independent noise term to each of the inputs unoise = √2α−1σinηt, 
where ηt ∼ 𝒩𝒩(0, 1)  is a random variable sampled from the standard 
normal distribution. The input noise strength is σin = 0.01. A baseline 
input u0 = 0.2 is added to each of the inputs at each time step.

RNN training
To train the RNN, we minimize the mean squared error between the 
output z(t) and the target ztarget(t):

ℒ ∶= ∑
ikt
(zikt − ztarget,ikt)

2 + λr∑
ikt

y2ikt. (25)

Here, k is the trial number, t is the time step within a trial, zikt is the ith 
output on trial k and time t, and yikt is the response of the ith RNN unit 
on trial k at time t. The first term is the task error, and the second term 
serves to regularize by penalizing the magnitude of the firing rates. To 
encourage the network to integrate sensory evidence over time and to 
not output responses during the context cue, these task errors are only 
penalized in the last 750 ms of each trial and during the presentation of 
the contextual cue. The training is performed with the Adam algorithm. 
We used the default values 0.9 and 0.999 for the decay rate of the first 
and second moment estimates, respectively. We used a learning rate of 
0.01 and a weight decay of 0.001 and set the hyperparameter λr = 0.05.

We control the degree of correlation between the input and output 
vectors in the RNN by adding an L2 penalty

λorth ∥ BTB − diag (BTB)∥2 (26)

to the loss function in Eq. (25) during training. Here, B is the matrix 
corresponding to the concatenation of Win and WT

out along their second 
dimension, with columns normalized to unit length. The hyperparam-
eter λorth controls the penalty weight. For RNNs in the main text, we set 
λorth = 1, which results in nearly orthogonal input vectors (Supplemen-
tary Fig. 6). We fit responses of these RNNs with latent circuit models 
in which the matrix B is constrained to be diagonal during fitting by 
setting off-diagonal elements to 0 after each gradient update. By set-
ting λorth to a smaller value during RNN training, the input vectors in 
the trained RNN become slightly correlated (Supplementary Fig. 6). 
To test the effect of these correlations in the latent circuit model, we 
add the penalty Eq. (26) to the loss function Eq. (7) during latent circuit 

fitting (Supplementary Fig. 6). These correlations can be captured in 
the latent circuit model fitted with smaller values of the corresponding 
λorth hyperparameter. Allowing for these input correlations in RNNs 
and the latent circuit does not have a strong effect on either fits or the 
underlying circuit mechanism (Supplementary Fig. 6).

The recurrent connection matrix Wrec is initialized so that excita-
tory connections are independent Gaussian random variables with 
mean 1/√N and variance 1/N. Inhibitory connections are initialized with 
mean 4/√N  and variance 1/N. The matrix is then scaled so that its spec-
tral radius is 1.5. To implement Dale’s law, connections are clipped to 
0 after each training step if they change sign. During training, we used 
minibatches of 128 trials with 1,800 trials total.

To assess performance, a choice for the RNN was defined as the 
sign of the difference between output units at the end of the trial. Psy-
chometric functions were then computed as the percentage of choices 
to the right for each combination of context, motion coherence and 
color coherence.

Linear decoding
To decode motion coherence from RNN responses, we fit a linear regres-
sion model

c = βy + b, (27)

where β ∈ ℝ1×N  is the vector of regression coefficients, c ∈ ℝ1×K⋅T  is the 
motion coherence on each trial, b ∈ ℝ is a bias term, and y ∈ ℝN×K⋅T  is 
the RNN responses at each time step during the stimulus epoch of each 
trial. Here, K is the number of trials, and T is the number of time points 
within a trial. We split the data into training and test sets and fit the 
model on the training set. There was no large difference between train-
ing and test scores (r2 = 0.535 and r2 = 0.531), suggesting that the model 
did not overfit. After fitting, we used the vector of regression coeffi-
cients β to define the decoder axis on which we project RNN responses.

Analysis of PFC data
We analyzed a publicly available dataset of neural activity recordings 
from the PFC (in and around the frontal eye field) from two monkeys 
performing a context-dependent decision-making task19. This dataset 
consisted of 762 units from monkey A and 640 units from monkey F 
(including single neurons and multiunits). To facilitate comparison 
with previous studies analyzing the same dataset19,21, we used identical 
initial preprocessing of the neural data (using the publicly available 
code at https://www.ini.uzh.ch/en/research/groups/mante/data.html). 
Because stimulus coherence levels varied across monkeys and days, to 
equate performance in the motion and color contexts, we replaced the 
coherences on each trial with their average values for each stimulus 
difficulty (average motion coherences: 0.05, 0.15 and 0.50 in mon-
key A and 0.07, 0.19 and 0.54 in monkey F; average color coherences: 
0.06, 0.18 and 0.50 in monkey A and 0.12, 0.30 and 0.75 in monkey F). 
Monkeys reported their choice with a saccade to one of two targets 
presented shortly after fixation for the entire trial duration. The mon-
keys were rewarded for saccades to the target location corresponding 
to the motion direction in the motion context and to the target whose 
color matched the dominant color of the dots in the color context. The 
stimulus coherence was assigned a sign (positive or negative) accord-
ing to the target location indicated by the stimulus. Because the color 
of the targets was randomized between locations on each trial, the 
sign of the color coherence reflects both the dominant color of the 
dots and the location of the red and green targets. The task therefore 
had 72 unique stimulus conditions defined by all combinations of six 
motion coherence levels, six color coherence levels and two contexts.

We fitted the latent circuit model to trial-averaged neural 
responses on correct trials. In our analyses, we included neurons that 
had at least four correct trials for each of the 72 unique trial condi-
tions, which produced 483 neurons for monkey A and 323 neurons 

http://www.nature.com/natureneuroscience
https://www.ini.uzh.ch/en/research/groups/mante/data.html


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01869-7

for monkey F. For cross-validation, we then split the trials into two 
equal disjoint sets and computed the trial-averaged response of each 
neuron for each trial condition within each set. We used the training 
set for model fitting and the validation set for visualizing projections 
of neural responses and quantifying the fit quality. For the analysis of 
error trials (Extended Data Figs. 7d and 8d), we considered the set of 
error trial conditions for which all analyzed neurons had at least one 
trial, which resulted in 16 conditions for monkey A and 26 conditions 
for monkey F. We then computed the trial-averaged response of each 
neuron for each trial condition within this set of error trials.

We analyzed neural responses during the presentation of the 
random dots stimulus because the available data consisted of neural 
responses starting at 100 ms after stimulus onset for a duration of 
750 ms. For each trial, we computed time-varying firing rates by count-
ing spikes in a 50-ms sliding square window (50-ms steps). The first 
window was centered at 100 ms after the onset of the stimulus, and 
the last window was centered at 100 ms after stimulus offset. Within 
the training and test sets, we z scored and smoothed (Gaussian kernel, 
σ = 40 ms) the response of each unit. Following previous studies19, from 
activity of each unit we subtracted a condition-independent term cor-
responding to the mean response at each time across trial conditions. 
To construct population responses, we combined the single-neuron 
responses for each trial condition. This resulted in 72 neural trajec-
tories for each combination of context, motion coherence and color 
coherence. Last, to denoise these trajectories, we projected them 
onto the principal components explaining 50% of their total variance  
(corresponding to the first 40 and 31 principal components for mon-
keys A and F, respectively).

We fitted latent circuit models to the PFC data following similar 
procedures as for RNNs. For each of the 72 conditions, we constructed 
input to the latent circuit from the context, motion and color coher-
ence corresponding to that condition. In the experimental task, the 
stimulus is presented 650 ms after the context cue for a duration 
of 750 ms. Neural recordings correspond to 100 ms after stimulus 
onset to 100 ms after stimulus offset. We thus modeled the task with  
150 time steps (10 ms in length) extending from the initial presentation 
of the contextual cue to 100 ms after stimulus offset. Contextual input 
was given to the model from t = 0 to t = 1,500 ms. Stimulus input was 
given to the model from t = 750 ms to t = 1,500 ms. We constructed two 
target outputs (z1 and z2) for each trial such that on trials for which the 
monkey chose the right target, the first target output was high (z1 = 1.2) 
and the second target output was low (z2 = 0.2) and vice versa for 
the left choice trials. We penalized errors between target and model 
outputs only in the last 250 ms of each trial. Responses of the latent 
circuit were fitted to the PFC data only on the last 15 time steps of each 
trajectory for which there were available PFC data. The latent circuit 
model was fitted with hyperparameter α = 0.2. The latent circuit model 
was fitted with a recurrent noise term of magnitude σrec = 0.15, which 
was added to each unit at each time step (Eq. (24)). Because neural 
responses were centered, we additionally fit an intercept term b so 
that the resulting model for PFC data was

y = Qx + b, (28)

τ ̇x = −x + [wrecx +winu]+, and (29)

z = woutx. (30)

Because of high dimensionality of PFC responses (40 and 31 principal 
components are required to account for ~50% of the total variance in 
PFC activity for monkeys A and F, respectively), we find a notable trade-
off between the task fit and data fit when fitting the low-dimensional 
latent circuit model to the PFC data. To control this tradeoff, we used 
a modified loss function when fitting PFC data,

L = ∑
k
∑
t
λ
∥ y −QQTy∥2

∥ y∥2
+ ∥ QT( y − b) − x∥2

∥ QTy∥2
+ ∥ z −woutx∥2

∥ z∥2
(31)

= λr2Q + r2x + r2z , (32)

designed to balance variance explained by the task-relevant subspace 
r2Q, the fits between projected PFC responses and the latent circuit 
trajectories in this subspace r2x  and the performance of the latent 
circuit on the task r2z . The hyperparameter λ = 0.5 was chosen via a 
grid search over the range λ ∈ [0, 1.5]. We found that near this value, 
the metrics r2x  and r2Q were maximized under the constraint that the 
latent model still performed well on the task (Extended Data Figs. 7a 
and 8a).

Statistics and reproducibility
We analyzed data from 200 RNN models trained with random initiali-
zations. Results were consistent across networks; therefore, we found 
this sample size to be sufficient for our study. No statistical method 
was used to predetermine sample size. For each of these networks, 
we trained 100 latent circuit models. This sample size was chosen so 
that the top ten latent models converged to a high fit accuracy. For 
PFC data, we fitted 200 latent circuit models to neural responses from 
each monkey. Neural recording data were previously described in 
Mante et al.19; no randomization or blinding was performed because 
there was only one experimental group. All recorded units that had 
at least four correct trials in each task condition were included in 
the analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Synthetic data used in this study can be reproduced using the source 
code with model parameters included in the Source Data files provided 
with this paper. Neural recording data were previously described in 
Mante et al.19 and are available in a public repository at https://www.
ini.uzh.ch/en/research/groups/mante/data.html. Source data are pro-
vided with this paper.

Code availability
The source code to reproduce the results of this study is publicly avail-
able on GitHub (https://github.com/engellab/latentcircuit) and Zenodo 
(https://zenodo.org/records/14020108)59.
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Extended Data Fig. 1 | Permutation test for RNNs confirming that the inferred 
latent connectivity depends on neural responses above the effects of the task. 
(a) Example latent circuit connectivity inferred from original RNN responses.  
(b) Recurrent connectivity weights are highly correlated between two latent 
circuit models fitted to the same original RNN responses starting from different 
initialization (Pearson correlation coefficient ρ = 0.99). (c) Example latent circuit 
connectivity inferred from shuffled RNN responses. The shuffling procedure 
randomly permutes neural responses with respect to trial conditions while 
preserving the input-output relationship on each trial so that the fitted latent 
circuit models can still perform the task. (d) Recurrent connectivity weights are 
not strongly correlated between the latent circuit model fitted to the shuffled 
RNN responses (x-axis) and the best model among 500 latent circuit models 
fitted to the same original RNN responses (y-axis, ρ = 0.45). (e) Histogram of 

correlation coefficients between recurrent connectivity weights of the best and 
all other 499 latent circuit models fitted to the original RNN responses (orange) 
and the best latent circuit model fitted to the original RNN responses and each of 
500 latent circuit models fitted to 500 random permutations of RNN responses 
(blue). The correlation coefficients are significantly less for the shuffled than 
original data (one-sided Mann-Whitney U test, p < 10−10), which indicates that 
models fitted to shuffled neural responses use more diverse connectivity to 
perform the task than models fitted to the original data. (f) Histogram of task 
performance metric for latent circuit models in e fitted to original (orange) and 
shuffled (blue) RNN responses. Latent circuit models fitted to shuffled RNN 
responses perform the task well and only slightly worse than latent circuit  
models fitted to the original data (average task performance metric r2z: original 
data μ = 0.91 ± 0.09, shuffled data μ = 0.88 ± 0.08).
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Extended Data Fig. 2 | Similarity of task solutions within clusters. For the 
ensemble of RNNs (Fig. 5 in the main text), we quantified the similarity of task 
solutions within each cluster by computing correlation coefficients between 
the latent connectivity of all RNNs within a cluster and the mean connectivity of 
that cluster. (a) Mean latent connectivity for cluster 1. (b) Latent connectivity 
of a sample model from cluster 1. (c) Scatter plot of weights in the mean 
connectivity shown in a (x-axis) versus sample connectivity shown in b (y-axis). 
The correlation coefficient is ρ = 0.92. (d) Distribution of correlation coefficients 
between the mean connectivity of cluster 1 and all latent models in cluster 1. High 
average correlation coefficient μ = 0.94 indicates that task solutions within the 

cluster are similar. Only p = 3% of RNNs in cluster 1 have correlation coefficient 
with the cluster mean less than 0.9. (e)-(h) Same as a-d for cluster 2. (i)-(l) Same 
as a-d for cluster 3. (m) Different inferred task solutions across clusters result 
from differences in neural responses across RNNs. We randomly selected 1,500 
latent circuit models from the ensemble and fitted each circuit to responses of a 
randomly selected target RNN. During fitting, we only optimized the embedding 
matrix Q while holding the latent circuit connectivity fixed. Fits were significantly 
worse when the latent circuit and the target RNN were sampled from different 
clusters (orange) than the same cluster (blue, one-sided Mann-Whitney U test:  
U = 52, 593, p < 10−10).
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Extended Data Fig. 3 | Asymmetric inhibitory mechanism for context-
dependent decision-making. In the ensemble of 200 RNNs trained on the 
context-dependent decision-making task, latent circuit solutions form three 
major clusters (Fig. 5 in the main text). In clusters 2 and 3, the latent circuit 
connectivity and dynamics show asymmetry with a bias towards the right or 
left stimulus representation. Yet, these circuits operate via the same inhibitory 
mechanism based on suppression of irrelevant stimuli. (a) Mean recurrent 
connectivity matrix for RNNs in cluster 2. Context nodes have stronger inhibitory 
connections onto sensory nodes that provide evidence for the right choice than 
onto sensory nodes that provide evidence for the left choice (orange rectangle). 
This bias is counterbalanced by asymmetry in the recurrent connections between 
sensory nodes. The motion-right node has stronger self-excitation than the 
motion-left node, and the motion-right node stronger inhibits the motion-left 
node than vice versa (pink square). The recurrent connections between the 
color-right and color-left nodes show the same asymmetry (green square). 
Thus, the recurrent interactions between sensory nodes are biased in favor of 
the right evidence to counterbalance the bias in inhibitory connections from 
contextual nodes which favor the left evidence. (b) RNN responses projected 
onto subspace defined by columns of the embedding matrix Q of the latent 

circuit model, averaged over all RNNs in cluster 2. The responses are shown on 
color context trials, when the motion stimulus is irrelevant. The projections 
show that the irrelevant motion responses are not suppressed but shifted toward 
the left-motion representation (orange box), due to stronger inhibition of the 
motion-right node by the color context node. At the same time, the relevant color 
responses are shifted toward the color-right representation (green box), due 
to biased recurrent connectivity between sensory color nodes. Thus, irrelevant 
motion responses provide a bias in favor of the left choice, but this bias is 
compensated by the bias in relevant color responses favoring the right choice. As 
a result, the RNN performance is unbiased (Supplementary Fig. 5). On trials when 
both color and motion evidence points to the left choice, the irrelevant motion 
responses reinforce the relevant color responses. Lines and shaded error bars 
represent the mean and standard deviation across trials, respectively. (c) Same as 
b but for motion context trials. Irrelevant color responses provide a bias in favor 
of the left choice (orange box), but this bias is compensated by the bias in relevant 
motion responses favoring the right choice (pink box). RNNs in cluster 3 operate 
via a similar asymmetric inhibitory mechanism with the flipped biases for the left 
and right stimulus representations. Lines and error bars represent the mean and 
one standard deviation computed across trials.
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Extended Data Fig. 4 | Dynamical selection vector mechanism in RNNs and 
latent circuits that implement the inhibitory suppression mechanism.  
(a) Schematic of the dynamical selection vector mechanism, which describes 
context-dependent decision-making in terms of linearized RNN dynamics in 
each context19. In this mechanism, choice is integrated along a line attractor in 
each context (l, choice axis). RNN dynamics linearized at a point x along this axis 
are controlled by the left and right eigenvectors for the zero eigenvalue. Only 
inputs aligned with the left eigenvector (vL, selection vector) drive activity along 
the right eigenvector (vR), which has a non-zero projection onto the choice axis l. 
Inputs not aligned with the selection vector are not integrated along the choice 
axis. Context-dependent selection arises because in each context, the relevant 
sensory input (IRel) aligns with the selection vector and the irrelevant sensory 
input (IIrrel) does not. In each context, the selection mechanism is characterized 
by three angles determining the alignment between the choice axis and the 
right eigenvector (θ1), the selection vector and the relevant input (θ2), and the 
selection vector and the irrelevant input (θ3). Schematic shows this arrangement 
in one context. (b) We analyzed the dynamical mechanism in an ensemble of 200 
RNNs trained on a context-dependent decision-making task (upper panel) and 
latent circuits inferred from their responses (lower panel, the best-fitting circuit 
for each RNN). These RNNs and latent circuits use the inhibitory suppression 
mechanism to perform the task (Fig. 5 in the main text). To find the choice axis, 
we fit a linear regression to neural responses. The regression predicted the 

neural response at the last time point of each trial as a linear combination of the 
context, motion coherence, color coherence and choice variables for that trial. 
The choice axis is a vector comprising regression coefficients for choice from 
all neurons. In each context, we then find the point x corresponding to the linear 
regression prediction with the choice, motion, and color variables set to zero, 
and context variable set to either 1 or − 1. We then compute eigenvalues and their 
corresponding left and right eigenvectors for the recurrent dynamics linearized 
at x. In all models, the top eigenvalue was close to zero and the real parts of 
the remaining eigenvalues were negative, consistent with an approximate line 
attractor. Dots are the mean and shading is standard deviation across models and 
two contexts. (c) We take vL and vR to be the left and right eigenvectors for the top 
eigenvalue. We quantify the arrangement of these eigenvectors relative to the 
relevant and irrelevant inputs and choice axis by computing the absolute value 
of the cosine of the angles θ1, θ2, θ3 between these vectors in all 200 RNNs (upper 
panel) and their latent circuits (lower panel). Consistent with the selection-vector 
mechanism, vR has non-zero overlap with the choice axis (blue), and the relevant 
input has higher overlap with the selection vector vL (pink) than the irrelevant 
input (green) both in RNNs and latent circuits. The center line of the box-and-
whisker plot marks the median, the box extends from the 25th (Q1) to the 75th (Q3) 
percentiles, and the whiskers extend to 1.5 times the interquartile range (Q3 − Q1). 
Dots indicate data points that lie outside this range.
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Extended Data Fig. 5 | Latent circuit models for RNNs with Softplus non-
linearity. (a) The shape of the Softplus activation function is controlled by a 
parameter β. As β increases, the activation function converges to a rectified-
linear (ReLU) non-linearity. (b) We trained RNNs with the Softplus activation 
function of units to perform the context-dependent decision-making task, 
using different values of the parameter β across RNNs (25 RNNs for each value 
of β). Only models with sufficiently large β (β > 10) learn to perform the task 
successfully. (c) Example connectivity of a latent circuit model with ReLU non-
linearity fitted to responses of an RNN with Softplus non-linearity for β = 10.  
The latent connectivity reveals a similar inhibitory mechanism as found in 

RNNs with the ReLU activation function. (d) Conjugating the RNN connectivity 
matrix with the embedding matrix Q of the latent circuit model reveals a 
low-dimensional structure QTWrecQ that closely matches the latent circuit 
connectivity wrec in c (Pearson correlation coefficient ρ = 0.88). Thus, the latent 
circuit model identifies the inhibitory mechanism in the RNN connectivity, 
despite the RNN and latent circuit model have different non-linearity. (e) 
Distribution of correlation coefficients ρ between the latent circuit connectivity 
wrec and the low-dimensional connectivity structure QTWrecQ in RNN, for all RNNs 
with different β in b. The correlation is strong for all RNNs that successfully 
perform the task (for β > 10).
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Extended Data Fig. 6 | Latent circuit models for RNNs with Softplus non-
linearity and heterogeneous gains across units. (a) The shape of the Softplus 
activation function for β = 10 and different values of a multiplicative gain 
parameter g. (b) The gain parameter was randomly selected for each RNN unit 
from the interval [0.5, 1.5]. Example vector of gain parameters for an RNN model 
is shown. (c) We trained 25 RNNs with the Softplus activation function (β = 10) and 
heterogeneous gains across units to perform the context-dependent decision-
making task. Most RNNs achieved high performance level on the task. (d) The 
latent circuit models with ReLU non-linearity provided a good fit to responses of 
these RNNs. Distribution of the fit quality metric R2 across RNNs is shown.  
(e) Example connectivity of a latent circuit model with ReLU non-linearity fitted 
to responses of an RNN with Softplus non-linearity and heterogeneous gains.  

The latent connectivity reveals a similar inhibitory mechanism as found in RNNs  
with the ReLU activation function. (f) Conjugating the RNN connectivity 
matrix with the embedding matrix Q of the latent circuit model reveals a 
low-dimensional structure QTWrecQ that closely matches the latent circuit 
connectivity wrec in e (Pearson correlation coefficient ρ = 0.88). Thus, the latent 
circuit model identifies the inhibitory mechanism in the RNN connectivity, 
despite the architecture mismatch between the RNN and latent circuit model.  
(g) Distribution of correlation coefficients ρ between the latent circuit 
connectivity wrec and the low-dimensional connectivity structure QTWrecQ in RNN, 
for all RNNs in c. Strong correlations indicate that the latent circuit connectivity 
faithfully represents the connectivity in RNNs despite their architecture 
mismatch.
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Extended Data Fig. 7 | Latent circuit analysis of PFC recordings from monkey 
A. (a) When fitting the latent circuit model to PFC data, the hyperparameter λ 
controls the balance between variance explained by the task-relevant subspace 
r2Q, the fits between projected PFC responses and the latent circuit trajectories in 
this subspace r2x, and the performance of the latent circuit on the task r2z. The 
terms r2Q and r2x  both decrease with λ, whereas the term r2Q increases. We choose λ 
= 0.5, since at this value, r2Q and r2x  are simultaneously maximized under the 
constraint that the latent circuit model still has high task performance (r2z ∼ 80%
). We obtained similar results for λ = 0.4 and λ = 0.6. Points represent mean across 
200 fits. Shading represents a 95% confidence interval estimated via a bootstrap 
with 1,000 resamples. (b) Projection of PFC responses onto motion, color and 
choice axes obtained from the latent circuit model. Trials are sorted by the 
monkey’s choice and context. These projections confirm that the motion and 
color axes in the latent circuit model do not represent choice on all trials and that 
the observed suppression of irrelevant representations (Fig. 6a in the main text) 
does not arise from sorting choice activity by irrelevant stimulus coherence. 
Lines and shaded error bars represent the mean and standard deviation across 
trials, respectively. (c) Permutation test confirming that the inferred latent 
connectivity depends on PFC responses above the effects of the task. Example 
latent circuit connectivity inferred from the original PFC responses (center) and 
from shuffled PFC responses permuted with respect to trial conditions while 
preserving the input-output relationship on each trial so that the latent model 
can perform the task (right). Histogram of correlation coefficients ρ between 
recurrent connectivity weights of the best and all other 999 latent circuit models 

fitted to the original PFC responses (orange) and the best latent circuit model 
fitted to the original PFC responses and each of 1,000 latent circuit models fitted 
to 1,000 random permutations of PFC responses (blue). The correlation 
coefficients are significantly less for the shuffled than original data (one-sided 
Mann-Whitney U test, p < 10−10), which indicates that PFC responses significantly 
constrain the inferred latent connectivity above the effect of the task.  
(d) Representation of irrelevant stimuli on error trials. The absolute value of the 
projection onto motion axis (left) of PFC responses on incongruent color-context 
trials sorted by motion coherence (x-axis) and whether the animal makes a 
correct choice (green) or error (red). The irrelevant motion representation is 
significantly less suppressed (has higher amplitude) on error than correct trials 
(combined condition one-sided Mann-Whitney test, p = 0.0064, U = 0.31, n = 24). 
This effect is largest when the irrelevant motion evidence is strongest. We see the 
same effects in the absolute value of the projection onto the color axis (right) of 
PFC responses on incongruent motion-context trials sorted by color coherence 
(x-axis) and whether the animal makes a correct choice (green) or error (red).  
The irrelevant color representation is significantly less suppressed on error than 
correct trials (combined condition one-sided Mann-Whitney test, p = 0.0002,  
U = 0.35, n = 24). These effects were not due to a non-specific increase in activity 
on error trials, as the representations of relevant stimuli were significantly 
smaller on error than correct trials (one-sided condition-combined Mann-
Whitney test: color axis in color context p = 0.0024, U = 0.35, n = 12, motion axis in 
motion context p = 0.045, U = 0.29, n = 12). Dots represent individual trial 
conditions, bars represent their mean.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-01869-7

Extended Data Fig. 8 | Latent circuit analysis of PFC recordings from monkey F. 
(a) When fitting the latent circuit model to PFC data, the hyperparameter λ 
controls the balance between variance explained by the task-relevant subspace 
r2Q, the fits between projected PFC responses and the latent circuit trajectories in 
this subspace r2x, and the performance of the latent circuit on the task r2z. The 
terms r2Q and r2x  both decrease with λ, whereas the term r2Q increases. We choose λ 
= 0.5, since at this value, r2Q and r2x  are simultaneously maximized under the 
constraint that the latent circuit model still has high task performance (r2z ∼ 82%
). We obtained similar results for λ = 0.4 and λ = 0.6. Points represent mean across 
200 fits. Shading represents a 95% confidence interval estimated via a bootstrap 
with 1,000 resamples. (b) Projection of PFC responses onto motion, color and 
choice axes obtained from the latent circuit model. Trials are sorted by the 
monkey’s choice and context. These projections confirm that the motion and 
color axes in the latent circuit model do not represent choice on all trials and that 
the observed suppression of irrelevant representations (Extended Data Fig. 9a) 
does not arise from sorting choice activity by irrelevant stimulus coherence. 
Lines and shaded error bars represent the mean and standard deviation across 
trials, respectively. (c) Permutation test confirming that the inferred latent 
connectivity depends on PFC responses above the effects of the task. Example 
latent circuit connectivity inferred from the original PFC responses (center) and 
from shuffled PFC responses permuted with respect to trial conditions while 
preserving the input-output relationship on each trial so that the latent model 
can perform the task (right). Histogram of correlation coefficients ρ between 
recurrent connectivity weights of the best and all other 999 latent circuit models 

fitted to the original PFC responses (orange) and the best latent circuit model 
fitted to the original PFC responses and each of 1,000 latent circuit models fitted 
to 1,000 random permutations of PFC responses (blue). The correlation 
coefficients are significantly less for the shuffled than original data (one-sided 
Mann-Whitney U test, p < 10−10), which indicates that PFC responses significantly 
constrain the inferred latent connectivity above the effect of the task. (d) 
Representation of irrelevant stimuli on error trials. The absolute value of the 
projection onto motion axis (left) of PFC responses on incongruent color-context 
trials sorted by motion coherence (x-axis) and whether the animal makes a 
correct choice (green) or error (red). The irrelevant motion representation is 
significantly less suppressed (has higher amplitude) on error than correct trials 
(combined condition one-sided Mann-Whitney test, p = 0.0002, U = 0.33, n = 30). 
This effect is largest when the irrelevant motion evidence is strongest. We see the 
same effects in the absolute value of the projection onto the color axis (right) of 
PFC responses on incongruent motion-context trials sorted by color coherence 
(x-axis) and whether the animal makes a correct choice (green) or error (red).  
The irrelevant color representation is significantly less suppressed on error than 
correct trials (combined condition Mann-Whitney test, p = 0.0002, U = 0.375,  
n = 26). These effects were not due to a non-specific increase in activity on error 
trials, as the representations of relevant stimuli were significantly smaller on 
error than correct trials (one-sided condition-combined Mann-Whitney test: 
color axis in color context p = 0.0002, U = 0.36, n = 24, motion axis in motion 
context p = 0.0002, U = 0.38, n = 20). Dots represent individual trial conditions, 
bars represent their mean.
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Extended Data Fig. 9 | Representations of irrelevant stimuli in PFC recordings 
from monkey F. (a) Projection of PFC responses from monkey F onto task-
subspace defined by the columns of the embedding matrix Q in the latent 
circuit model fitted to the PFC data. The four latent circuit axes correspond to 
context, choice, motion and color representations as in Fig. 6a in the main text. 
Projections onto motion and color axes reveal that representations of stimuli in 
PFC are suppressed when they are irrelevant. Less suppression along the motion 
axis on color context trials (in comparison to Monkey A and the color axis for 
Monkey F) is consistent with behavior: psychometric functions show Monkey F 
choices are sensitive to irrelevant motion information19. Lines and shaded error 
bars represent the mean and standard deviation across trials, respectively.  
(b) Latent circuit connectivity inferred from PFC responses (upper panel) shows 
an inhibitory mechanism similar to that observed in monkey A (cf. Fig. 6b in the 
main text). The checkerboard pattern of connections from sensory to choice 
nodes implements the alternative stimulus-response mappings. The pattern 

of inhibitory connections from the context to sensory nodes implements 
a suppression mechanism which inhibits the irrelevant stimulus-response 
mapping in each context. Standard deviation of connectivity weights across top 
10 latent circuit fits to the same PFC data quantifies the estimation uncertainty 
for each connection (lower panel). (c) The latent circuit model in which the 
latent recurrent connectivity matrix is constrained to be zero (wrec ≡ 0) identifies 
a different task-subspace, in which projections of PFC responses onto motion 
axes show less suppression of motion representations on trials when they are 
irrelevant, reproducing results from previous studies19. Projections onto the 
color axis show suppressed color representations on motion context trials, 
consistent with results from targeted dimensionality reduction applied to the 
same data19, and may reflect a lack of recorded color-sensitive neurons which are 
unmodulated by context. Lines and shaded error bars represent the mean and 
standard deviation across trials, respectively.
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Extended Data Fig. 10 | Statistically significant suppression of irrelevant 
stimulus representations in PFC. (a) Suppression of irrelevant stimulus 
representations in monkey A. Distribution across trials of the absolute value of 
the projection of the PFC activity at the last time bin of stimulus presentation 
(t = 800 ms in Fig. 6 in the main text) onto motion (left) and color axes (right) of 
the latent circuit model, separately for color (blue) and motion context trials 
(red). The distributions include all correct trials for all combinations of motion 
and color coherence. The amplitude of stimulus representation along these 

axes is significantly smaller when stimulus is irrelevant than when it is relevant 
(one-sided Mann-Whitney U test, motion axis p = 1.4 ⋅ 10−9, color axis p = 1.0 ⋅ 10−10, 
n = 36 trial conditions per context). The center line of the box-and-whisker plot 
marks the median, the box extends from the 25th (Q1) to the 75th (Q3) percentiles, 
and the whiskers extend to 1.5 times the interquartile range (Q3 − Q1). Diamonds 
indicate points which lie outside this range. (b) Same as a for monkey F (motion 
axis p = 1.5 ⋅ 10−5, color axis p = 1.6 ⋅ 10−7, n = 36 trial conditions per context).
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Software and code

Policy information about availability of computer code

Data collection The neurophysiological data were previously described in Ref. 19 (Mante et al., Nature, 503, 78, 2013). Data were recorded using the MAP 

data-acquisition system (Plexon Inc., Dallas, TX). Spike sorting was conducted by clustering based on principal component analysis using the 

Plexon offline sorter (Plexon Inc., Dallas, TX).

Data analysis Custom Python code was used for data analyses. Plots were generated with Python (version 3.8) and Seaborn (version 0.9.0). Recurrent 

neural networks were trained using PyTorch (version 2.4). The source code to reproduce results of this study is available on 

GitHub  (https://github.com/engellab/latentcircuit) and Zenodo (https://zenodo.org/records/14020108).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Synthetic data were generated using custom Python 3 code and can be reproduced using the source code with model parameters included in the Source Data files 

provided with this paper. The neurophysiological data were previously described in Ref. 19 (Mante et al., Nature, 503, 78, 2013) and are available in the public 

repository  https://www.ini.uzh.ch/en/research/groups/mante/data.html for download. 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The neurophysiological data were previously described in Ref. 19 (Mante et al., Nature, 503, 78, 2013). The number of trials in each session 

was determined by the animals' ability to perform the task. The number of simultaneously recorded neurons was determined by the 

characteristics of the recording technique. The number of subjects (2) is standard for the primate studies.

Data exclusions Analysis windows for both monkeys started 100 ms after stimulus onset and continued for 750 ms after stimulus onset. All recorded units that 

had at least four correct trials in each task condition were included in the analysis.

Replication Findings were successfully replicated in two macaque monkeys.

Randomization No randomization was performed. Only one experimental group exists.

Blinding No blinding was performed. Only one experimental group exists.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals The animals were adult males, ages 13 (monkey A) and 8 (monkey F) years old at the time the experiments were conducted.

Wild animals The study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 

Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 

numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 

performed, justify reasons for lack of sex-based analysis.

Field-collected samples The study did not involve field-collected samples.

Ethics oversight No ethical approval was necessary as all neurophysiological data were obtained from a public repository. The data were collected and 

previously described in Ref. 19 (Mante et al., Nature, 503, 78, 2013). All surgical and behavioral procedures conformed to the 

guidelines established by the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee of 

Stanford University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
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